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ABSTRACT 
Mutations in the genealogy of the sequences in a random sample from a  population can be classified 

as external  and  internal. External  mutations are  mutations  that  occurred in the  external branches and 
internal mutations are mutations that  occurred in the  internal branches  of the genealogy. Under  the 
assumption  of selective neutrality,  the  expected  number of external mutations is equal to 0 = 4N,p, 
where N ,  is the effective  population size and is the  rate of mutation per  gene  per  generation. 
Interestingly, this expectation is independent of the sample size. The  number of external mutations 
is likely to deviate from its neutral expectation when there is selection while’the  number of internal 
mutations is  less affected by the presence  of selection. Statistical properties of the  numbers of external 
mutations and of internal mutations are studied and  their relationships to two commonly used 
estimates of 0 are  derived.  From these properties, several new statistical tests based on a random 
sample of DNA sequences from  the population 
mutations at a locus are  neutral. 

. .  

A N important issue  in molecular population ge- 
netics is  how to detect the presence of natural 

selection among  the variants of a  nucleotide  sequence 
in a  population (e.g., see HUDSON, KREITMAN and 
AGUADE  1987; TAJIMA 1989). The pattern of  poly- 
morphism in a  population is affected  not only by 
mutation and  random  drift  but also by selection. With 
the  advent of rapid  sequencing  techniques, polymor- 
phism data  at  the DNA level is expected to increase 
dramatically. Thus,  there is a  great  need  for  a pow- 
erful test for  the assumption of neutrality of muta- 
tions. 

TAJIMA (1  989) has proposed  a  method  for the above 
purpose.  He  considered  the number of segregating 
sites ( K )  and  the average  number of nucleotide  differ- 
ences between two sequences (II,) in a  random sample 
of n sequences from  a  population. He  noted  that K is 
strongly affected by the existence of deleterious alleles 
because deleterious alleles are usually kept in  low 
frequencies  but K ignores the frequency of mutants. 
On the  other  hand, II, is not much affected by the 
existence of deleterious alleles because it considers the 
frequency of mutants. Therefore, if some of the se- 
quences in the sample have selective effects, then  the 
estimate of 19 = 4N,p based on K (WATTERSON 1975) 
will be  different  from  the  estimate based on II, (TA- 
JIMA 1983); N, is the effective population size and p is 
the mutation rate  per  gene  per  generation. TAJIMA 
(1989)  proposed to use the  difference between these 
two estimates to  detect selection among  the sequences. 
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are developed for testing the hypothesis that all 

The test statistic is 

where 
n-1 1 

a, = -. (2) 
k = l  k 

In this paper, we propose  a new approach. Consider 
the  distribution of the  mutations in the genealogy of 
a  random sample of genes  from  the  population. “Old” 
mutations will tend to be  found in the  older  part of 
the genealogy while “new”  mutations will likely be 
found in the  younger  part of the genealogy. The older 
part of the genealogy consists  mainly  of internal 
branches, while the younger  part mainly of external 
branches. In the presence of purifying or negative 
selection there will tend  to be excess  of mutations in 
the  external  branches because deleterious alleles are 
present in  low frequencies. Also there is  likely to  be 
excess of mutations in the  external  branches if an 
advantageous allele has recently become fixed in the 
population, because then  the majority of the  muta- 
tions in the population are expected  to be young. On 
the  other  hand, if balancing (overdominant) selection 
is operating at  the locus, then some alleles may be old 
and so there may be deficiency of mutations in the 
external  branches. Therefore, comparing  the  num- 
bers of mutations in internal  and  external  branches 
with their  expectations  under selective neutrality 
should be a powerful way to detect selection. This is 
the idea behind  the  proposed tests in the  paper. 
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FIGURE I.-An example of genealogy of five  genes. t,(m = 
2,. . . ,5) is the time (number of generations) required for the coa- 
lescence from m sequences to m - 1 sequences. The dashed lines 
signify the partition of the genealogy into m - 1 parts by the m 
branching nodes. 

STATISTICAL  PROPERTIES OF INTERNAL  AND 
EXTERNAL  BRANCHES 

Expected time  lengths of internal  and  external 
branches:  Consider  a  random sample of n sequences 
of a DNA region  from  a diploid random  mating 
population of effective size Ne. Assume that all muta- 
tions in the  region are selectively neutral.  Further, 
assume that  the DNA region is completely linked so 
that no recombination occurs between sequences. 
Then  the n sequences in the sample are connected by 
a single phylogenetic tree, i.e., a genealogy (Figure 1 ) .  
In other words, the n sequences can be  traced back 
first to n - 1 ancestral sequences, next to n - 2 
ancestral sequences and so on until reaching  a single 
common ancestral sequence. Let t ,  be  the  time  dura- 
tion (the  number of generations)  required  for the 
coalescence from m sequences to m - 1 sequences. 
For convenience, we define t l  = 0. KINCMAN (1982) ,  
HUDSON (1982)  and TAJIMA (1983)  showed that  for 
m 3 2 ,  tm has the exponential  distribution 

Therefore,  the first and second moments of the coa- 
lescence time t, is 

where M = 4N,. 

W.-H. Li 

The genealogy of n genes has 2(n - 1) branches. A 
branch is said to be  external if it directly connects to 
an  external  node, otherwise it is said to be  internal. 
Thus n of the 2(n - 1) branches are external and  the 
other n - 2 branches are internal. Number  the n 
external  branches  arbitrarily  from 1 to n .  The num- 
bering is entirely  for  operational convenience and  the 
number assigned to  a  branch  does  not  contain any 
information  about the relative location or the length 
of the branch. Let J,, I ,  and L, be, respectively, the 
total time length of  all branches, the total time length 
of internal  branches and  the total time  length of 
external  branches.  Note  that 

J ,  = I ,  + L,. 

Let the length of the  ith  external  branch be I?'. Then 
L, = l? + 1:) + . . . + 1;). Let 1, be the length of a 
randomly chosen external  branch of the genealogy of 
n genes. Then we have 

E(L,) = E($)) + . . . + E ( 1 t ) )  
( 5 )  

= nE(L), 

from the fact that every external  branch has the same 
distribution because their labeling does  not  contain 
any information  except  for  operational convenience. 

The genealogy of a  random sample of n genes from 
a single random  mating  population is generated by 
adding two external  branches of length t ,  to  the  end 
of a randomly chosen external  branch of the geneal- 
ogy ( n  - 1 )  genes, while the remaining ( n  - 2 )  external 
branches each grow by a  length t,. Therefore, we 
have the  recurrent relationship 

n - 2  
n 

2 Pr = -. 
n 

It follows that 

Let g, = n(n - l)l,. Then from Equations 1 and 5 we 
have 
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Therefore, 

E(L,) = nE(1,) = M .  (1 0 )  

Note  that (10) is independent of the sample size n. 
That is, regardless of the  number of sequences sam- 
pled, the expected total time  length of the  external 
branches is always 4N, generations. 

The recurrent relationship  for J ,  is simple. By add- 
ing one  gene  to  the genealogy of n - 1 genes, the 
total  length of the genealogy increase by nt,. From 
Equation 1 ,  we have 

= Ma,. 

Therefore, 

Variances  and  covariance of internal and external 
branches: We have demonstrated  the  power of recur- 
rent relationships for  derivation of the expectations 
of the total  time  lengths of external  and  internal 
branches. The method can also be used to  derive 
higher  moments of these  quantities. The variance of 
J ,  can be directly computed. Since 

= 
i j E ( t i t j )  + k%(t:) 

i#j k 

f 
( 1  3) 

= (a: + b,)M2, 

where 

we have 

Varu,) = b,M2. 

Note  that 

= nE(1f) + n(n - l)E(Z,Z;), 

where 1, and 1; are two different  randomly chosen 
external  branches. I t  can be shown (APPENDIX A) that 

n(n - l)E(Z,Z;) = 
L 

(n - l ) (n  - 2 )  

n(n + 1 )  

Therefore, 

Var(L,) = - E2(L,) 

n(n + 1 )  

= c,M2, 

where c ,  = 1 when n = 2 and when n > 2 
na, - 2(n - 1) 
(n - 1)(n - 2)'  c n  = 2 

Notice that 

E ( I n L n )  = EunL) - E(LX), 

E(IE) = EU:) - 2EV,L,) + 
Thus,  to calculate the variance of I ,  and  the covari- 
ance of I ,  and L,, one needs only to find EU,L,). 
Again, recurrent relationships can be used to show 
(APPENDIX A) that 

E U n L n )  = - n 
n -  1 

a,M '. 

= (La, n - 1  - c,)  M 2 ,  

= [a:  + b, - 2 ( 5  a,  - c,) 

= bn-2-  ( n - 1  
an 

The numbers of mutations in external and  inter- 
nal  branches: Let vr and v i  be the total number of 
mutations in external  and internal  branches, respec- 
tively, and let v = 7, + qe be the total number of 
mutations  that  occurred in the  entire genealogy of n 
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genes. Let the  mutation rate  per sequence  per  gen- 
eration be p and assume that  the  number of mutations 
that  occur in a  sequence in a  period of I generations 
follows the Poisson distribution 

Then  the total number, qe, of mutations in the  exter- 
nal branches, given pL, ,  follows the Poisson distribu- 
tion 

exp(-pL)(pL)'1L 
??A W v ,  I F L n )  

where e = 4Nep and c, is as  defined above. It is 
interesting to  note  that 

lim  Var(L,) = M'hm c, = 0. 
n"rm n-m 

Equations 20 and 21 were also given by Fu and LI 
(1 993) and  are  the same as the  expectation and vari- 
ance of the  number of segregating sites ( K )  in a sample 
of n sequences given by WATTERSON (1975) under  the 
infinite site model. Similarly, 

(2 n -  I - .,)e', 

= a,@ + b,%' - 2 (A- c,) 8' - 6 - c,8' 
n -  1 (24) 

=(a,- l )e+ bn-2- + c, 0'. a, ( n - 1  ) 

RELATIONSHIPS AMONG v i ,  vc AND II, 

Let sy be the  number of nucleotide  differences 
between sequences i and j in the sample. Then,  the 
mean number of pairwise differences  for the n se- 
quences is defined by 

TAJIMA (1983,  1989) showed that  the mean and var- 
iance of II, are 

E(K)  = 8, (26) 

n +  1 2 ( n 2 + n + 3 )  
Var(n,) = - O +  8'. (27) 

3(n - 1) 9n(n - 1 )  

and  the covariance of II, and q is 

The covariance between II, and qt or qi can also be 
derived by considering recurrent relationships. It can 
be shown (APPENDIX B) that 

n -  1 
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and  the  number of mutations in the  external  branches 
in the sample at  the  ith site. Then si is equal to  the 
number of different nucleotides minus one  at site i 
among  the n sequences and ei is equal to  the  number 
of singleton nucleotides (excluding any singleton in 
the  group sequence); a singleton nucleotide is a  nu- 
cleotide that  appears only once at  the site among  the 
sequences in the sample. Suppose that  the sequences 
are m sites long. Then 

m m 

r]  = si and qe = Cei .  
i i 

,- 
9 '  0 

40 80 120 160 200 

number of genes in the  sample 

FIGURE 2.--Correlations. The solid, dotted and the dash-dotted 
curves are  the correlations between qe and qi, between qe and II, 
and between q and n,, respectively. 

One can compute  the  correlations between various 
quantities  considered here by using the formulas  de- 
rived above and in the preceding sections. For exam- 
ple, the correlation between vi and II, is 

rVi,ns = CoV(~i,II,)/Jvar(a,)var(~,). 

which can be  computed by using (24),  (27) and (30). 
Figure 2 shows the correlations between ve and t i ,  

between qe and n, and between 9 and n,. I t  is clear 
that 9, and vi becomes almost independent when n b 
10 while the correlation between 7 and II, remains 
strong  for  large n. 

In the  next two sections, the above results will be 
used to  develop several test statistics. Tests with an 
outgroup will be considered first while tests with no 
outgroup will be  considered  later. 

TEST STATISTICS WITH AN OUTGROUP 

Let us first consider how to obtain the total  number 
(9) of mutations and  the  number (.)le) of mutations in 
the  external branches. Both 7 and qe have to be 
inferred  from  sampled sequences. Inferring  these two 
quantities by reconstructing  the genealogy of the sam- 
pled genes is obviously the most accurate  method. 
However, if infinite site model is assumed and  an 
outgroup sequence is available, then  there is a simpler 
way to obtain the two quantities. An outgroup is not 
part of the sample of n genes  but  a  sequence whose 
common ancestor with the n genes in the sample is 
older  than  that of the n genes in the sample. Let s, 
and ei be, respectively, the total number of mutations 

However, when there is no  outgroup, it is difficult to 
infer accurately the  number of external  mutations. 
The test statistics of this kind will be considered  later. 

From the observed  numbers of mutations in the 
internal  branches and  external  branches, we have two 
unbiased estimates of 8, that is, vi/(a, - 1) and te from 
Equations 18 and 22, respectively. We consider these 
two estimates because vi and le become largely inde- 
pendent even when the sample size n is only moder- 
ately large. If neutrality of mutations  does  not  hold, 
we expect the estimates a/(a, - 1) and 7, to be 
different. Therefore,  the normalized difference be- 
tween v,/(un - l) and ve can be used to test the null 
hypothesis. That is, we choose the test statistic as 

vi - (an - 1 ) ~ e  - 9 - an% - 
JVar(qi - (an - 1)~~) Jvar[s - a n ~ e ] '  

where 

Var[.rl, - (a, - l)ve] = Var(v - w e )  

= Var(q) + a i  Var(qe) - 2a, cov(tl,q,) 

= ea,(a, - 1) 

b, + an(an - 2)c, - 2 4 5  n- - c,)] 0' (31) 

The normalization is intended  to  standardize  the var- 
iance of the test statistic and hopefully bring  the 
statistic close to  the  standard  normal  distribution. 

In  practice, the value of 8 has to be estimated. As 
we have shown (Fu and LI 1993), under  the neutrality 
hypothesis, the estimate T/U,  of t9 is asymptotically 
optimal. Therefore, we shall  use it as the estimate of 
0. As pointed out by TAJIMA (1989), (q/a,)' is not  an 
unbiased estimate of 8'. The unbiased estimate of O2 
is ~ ( 9  - l)/(a: + b,). With the replacement of 0 and 
B', respectively, by their unbiased estimates, the above 
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TABLE 1 

Values of om, vD, UD. and vD* as  functions of sample  size n 

n a. VD  UD * VD. n a. VD  UD  VD- n a. V D  UD. VD.  

2 1.000 
3 1.500 
4  1.833 
5  2.083 
6 2.283 
7  2.450 
8 2.593 
9  2.718 

10 2.829 
11  2.929 
12  3.020 
13 3.103 
14 3.180 
15 3.252 
16 3.318 
17 3.381 
18 3.440 
19  3.495 
20 3.548 
21 3.598 
22  3.645 
23 3.691 
24  3.734 
25  3.776 
26  3.816 
27 3.854 
28 3.891 
29 3.927 
30  3.962 
31 3.995 
32  4.027 
33  4.058 
34 4.089 

0.000 
0.036 
0.130 
0.174 
0.196 
0.207 
0.2 12 
0.215 
0.2 15 
0.2 14 
0.212 
0.209 
0.207 
0.204 
0.20 1 
0.198 
0.196 
0.193 
0.190 
0.187 
0.185 
0.182 
0.180 
0.177 
0.175 
0.173 
0.171 
0.169 
0.166 
0.164 
0.163 
0.161 
0.159 

0.000 
0.000 
0.341 
0.6 15 
0.841 
1.033 
1.199 
1.344 
1.473 
1.589 
1.694 
1.791 
1.879 
1.961 
2.038 
2.109 
2.176 
2.239 
2.299 
2.355 
2.409 
2.460 
2.509 
2.556 
2.601 
2.644 
2.685 
2.725 
2.763 
2.800 
2.835 
2.870 
2.903 

test statistic becomes 

0.000 
0.000 
0.325 
0.427 
0.459 
0.464 
0.459 
0.448 
0.436 
0.423 
0.4 10 
0.398 
0.386 
0.375 
0.364 
0.354 
0.345 
0.336 
0.327 
0.320 
0.312 
0.305 
0.299 
0.292 
0.286 
0.281 
0.275 
0.270 
0.265 
0.261 
0.256 
0.252 
0.248 - 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

4.118 
4.147 
4.175 
4.202 
4.228 
4.254 
4.279 
4.303 
4.327 
4.350 
4.373 
4.395 
4.4 17 
4.438 
4.459 
4.479 
4.499 
4.519 
4.538 
4.557 
4.575 
4.594 
4.61 1 
4.629 
4.646 
4.663 
4.680 
4.696 
4.712 
4.728 
4.744 
4.759 
4.774 

0.157 
0.156 
0.154 
0.152 
0.151 
0.149 
0.148 
0.146 
0.145 
0.144 
0.142 
0.141 
0.140 
0.139 
0.137 
0.136 
0.135 
0.134 
0.133 
0.132 
0.131 
0.130 
0.129 
0.128 
0.127 
0.126 
0.125 
0.124 
0.123 
0.123 
0.122 
0.121 
0.120 

2.936 
2.967 
2.998 
3.027 
3.056 
3.084 
3.112 
3.138 
3.164 
3.190 
3.214 
3.238 
3.262 
3.285 
3.308 
3.330 
3.351 
3.373 
3.393 
3.414 
3.434 
3.453 
3.473 
3.49 1 
3.510 
3.528 
3.546 
3.564 
3.581 
3.598 
3.615 
3.631 
3.647 

0.244 
0.240 
0.236 
0.233 
0.230 
0.226 
0.223 
0.220 
0.217 
0.2 15 
0.212 
0.209 
0.207 
0.204 
0.202 
0.200 
0.197 
0.195 
0.193 
0.191 
0.189 
0.187 
0.185 
0. I83 
0.182 
0.180 
0.178 
0.177 
0.175 
0.173 
0.172 
0.170 
0.169 

68 4.789 
69 4.804 
70 4.819 
71 4.833 
72 4.847 
73 4.861 
74 4.875 
75 4.888 
76 4.901 
77 4.915 
78 4.928 
79 4.940 
80 4.953 
81 4.965 
82 4.978 
83 4.990 
84 5.002 
85 5.014 
86 5.026 
87 5.037 
88 5.049 
89 5.060 
90 5.071 
91 5.083 
92 5.094 
93 5.104 
94 5.115 
95 5.126 
96 5.136 
97 5.147 
98 5.157 
99 5.167 

100 5.177 

0.119 
0.119 
0.118 
0.117 
0.116 
0.116 
0.115 
0.114 
0.1 14 
0.113 
0.112 
0.112 
0.11 1 
0.111 
0.110 
0.109 
0.109 
0.108 
0.108 
0.107 
0.107 
0.106 
0.105 
0.105 
0.104 
0.104 
0.103 
0.103 
0.102 
0.102 
0.101 
0.101 
0.101 

3.663 
3.679 
3.695 
3.710 
3.725 
3.740 
3.754 
3.769 
3.783 
3.797 
3.81 1 
3.824 
3.838 
3.851 
3.864 
3.877 
3.890 
3.902 
3.915 
3.927 
3.939 
3.951 
3.963 
3.975 
3.987 
3.998 
4.010 
4.02 1 
4.032 
4.043 
4.054 
4.065 
4.075 

0.167 
0.166 
0.165 
0.163 
0.162 
0.161 
0.159 
0.158 
0.157 
0.156 
0.155 
0.154 
0.153 
0.151 
0.150 
0.149 
0.148 
0.147 
0.146 
0.145 
0.144 
0.143 
0.143 
0.142 
0.141 
0.140 
0.139 
0.138 
0.137 
0.137 
0.136 
0.135 
0. I34 

where 

~ g = a , -  1 - v D .  

The values of a, and VD are tabulated in Table 1  for 
n = 2, . . ., 100.  Note that a negative value of D means 
excess  of mutations in external  branches whereas a 
positive value means deficiency. 

Unfortunately, like the test proposed by TAJIMA 
(1989),  the test in (32) does  not follow the  standard 
normal  distribution. The distribution is left skewed. 
Although  the  beta  distribution may provide  a better 
approximation  than the  standard normal  distribution, 
it is not without problems. First, D is not a continuous 
variable, though  approximately so when 8 is very 
large. Second, the minimum and maximum values of 
D  depend  on 8. Third,  there is also a  problem in 

assuming a  constant mean and variance, when infer- 
ring  the  parameters of the beta distribution. For ex- 
ample, TAJIMA (1989) assumed that  the mean and 
variance of his test are 0 and 1, respectively, for all 
sample sizes but it is clear from his simulations that 
they depend  on sample sizes.  Because of these prob- 
lems, we use the following computer simulation ap- 
proach to  determine  the  percentage  points of the test. 
This approach  should give more  accurate results than 
using any approximation by standard  distributions. 

T o  determine  the  percentage points of the distri- 
bution of D for  a given sample size n and  a value of 8, 
we first simulate a  large  number (1 00,000) of samples 
each having exactly n sequences. The value of D is 
computed  for each simulated sample and  therefore 
the empirical distribution of D can be  obtained.  Prop- 
erties  related to  the distribution such as percentage 
points can then be computed  from the empirical dis- 
tribution.  For  example, we compute the left tail per- 
centage  point ao.olo, which is the maximum x value 
such that 

Pr(D C x) < 0.010, 
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TABLE 2 

Percentage  points of statistic D and D* M functions of sample size n 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
I4 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

-1.87 
-1.96 
-2.10 
-2.15 
-2.27 
-2.30 
-2.33 
-2.41 
-2.48 
-2.50 
-2.47 
-2.54 
-2.58 
-2.65 
-2.58 
-2.58 
-2.63 
-2.62 
-2.65 
-2.67 
-2.70 
-2.72 
-2.75 
-2.77 
-2.79 
-2.79 
-2.75 
-2.8 1 
-2.78 
-2.77 
-2.77 
-2.81 
-2.79 
-2.81 
-2.81 
-2.82 
-2.83 
-2.87 
-2.90 
-2.90 
-2.85 
-2.89 
-2.88 
-2.92 
-2.88 
-2.91 
-2.91 

-1.68 
-1.77 
-1.88 
-1.90 
-1.97 
-2.04 
-2.1 1 
-2.18 
-2.12 
-2.19 
-2.26 
-2.18 
-2.19 
-2.22 
-2.21 
-2.23 
-2.26 
-2.25 
-2.24 
-2.25 
-2.27 
-2.29 
-2.31 
-2.33 
-2.34 
-2.35 
-2.37 
-2.38 
-2.32 
-2.33 
-2.32 
-2.35 
-2.34 
-2.36 
-2.36 
-2.38 
-2.39 
-2.45 
-2.39 
-2.39 
-2.35 
-2.38 
-2.35 
-2.39 
-2.35 
-2.37 
-2.36 

-1.51 
-1.57 
-1.69 
-1.67 
-1.75 
-1.79 
-1.81 
-1.87 
-1.92 
-1.94 
-2.00 
- 1.88 
-1.86 
-1.89 
-1.89 
-1.89 
-1.91 
-1.92 
-1.92 
-1.91 
-1.92 
-1.95 
-1.96 
-1.98 
-2.0 1 
-2.04 
-2.06 
-1.95 
-1.94 
-1.94 
- 1.94 
- 1.96 
-1.94 
-1.96 
-1.95 
-1.95 
-1.96 
-1.95 
-1.95 
-1.95 
-1.93 
-1.94 
-1.92 
-1.96 
- 1.92 
-1.95 
-1.95 

1.86 
1.63 
1.53 
1.48 
1.45 
1.42 
1.42 
1.41 
1.39 
I .38 
1.39 
1.38 
1.37 
1.36 
1.38 
1.38 
1.37 
1.37 
1.36 
1.36 
1.35 
1.35 
1.37 
1.36 
1.36 
1.36 
1.37 
1.38 
1.37 
1.37 
1.36 
1.38 
1.37 
! .37 
i 3 9  
1.33 
1.37 
1.39 
1.39 
1.38 
1.39 
1.40 
1.40 
1.40 
1.39 
1.40 
1.41 

2.16 
1.83 
1.71 
1.66 
1.61 
1.58 
1.59 
1.57 
1.55 
1.54 
1.54 
1.54 
1.55 
1.54 
1.54 
1.53 
1.53 
1.53 
1.53 
1.53 
1.54 
1.54 
1.54 
1.54 
1.54 
1.54 
1.54 
1.53 
1.55 
1.55 
1.55 
1.55 
1.55 
1.55 
1.55 
1.56 
1.56 
1.57 
1.57 
1.58 
1.59 
1.59 
1.59 
1.59 
1.60 
1.61 
1.61 

2.38 
2.02 
1.88 
1.80 
1.76 
1.72 
1.71 
1.70 
1.70 
1.70 
1.69 
1.69 
1.70 
1.68 
1.68 
1.69 
1.69 
1.69 
1.69 
1.70 
1.70 
1.70 
1.70 
1.70 
1.70 
1.71 
1.71 
1.71 
1.72 
1.72 
1.72 
1.73 
1.73 
1.73 
1.74 
1.75 
1.75 
1.76 
1.76 
1.76 
1.78 
1.78 
1.78 
1.78 
1.80 
1.80 
1.81 

-0.87 
-1.26 
-1.54 
-1.75 
-1.93 
-2.07 
-2.19 
-2.30 
-2.39 
-2.49 
-2.54 
-2.61 
-2.68 
-2.75 
-2.79 
-2.84 
-2.87 
-2.93 
-2.99 
-3.02 
-3.04 
-3.08 
-3.09 
-3.1 1 
-3.17 
-3.17 
-3.18 
-3.25 
-3.23 
-3.28 
-3.29 
-3.33 
-3.34 
-3.35 
-3.40 
-3.37 
-3.38 
-3.34 
-3.41 
-3.39 
-3.27 
-3.32 
-3.22 
-3.40 
-3.27 
-3.19 
-3.27 

-0.87 
-1.23 
- 1.49 
- 1.67 
-1.82 
-1.93 
-2.02 
-2.08 
-2.14 
-2.21 
-2.25 
-2.29 
-2.34 
-2.39 
-2.41 
-2.41 
-2.43 
-2.47 
-2.47 
-2.50 
-2.51 
-2.52 
-2.51 
-2.50 
-2.55 
-2.52 
-2.53 
-2.55 
-2.50 
-2.52 
-2.50 
-2.51 
-2.49 
-2.50 
-2.51 
-2.47 
-2.45 
-2.4 1 
-2.41 
-2.44 
-2.36 
-2.34 
-2.33 
-2.35 
-2.30 
-2.30 
-2.33 

-0.87 
-1.20 
-1.43 
-1.57 
-1.67 
-1.74 
-1.79 
-1.86 
-1.87 
-1.91 
-1.92 
- 1.93 
- 1.96 
- 1.98 
- 1.97 
- 1.97 
-2.02 
-1.99 
-1.96 
-1.95 
-1.96 
-1.95 
-1.94 
-1.92 
- 1.95 
- 1.96 
-1.91 
-1.94 
-1.96 
-2.00 
-2.05 
-1.86 
-1.88 
-1.86 
-1.84 
-1.87 
-1.88 
-1.87 
-1.90 
-1.87 
-1.19 
-1.89 
-1.91 
- 1.88 
-1.91 
- 1.94 
-1.90 

1.89 2.08 2.19 
1.57 1.68 1.77 
1.46 1.55 1.62 
1.37 1.46 1.56 
1.34 1.43 1.51 
1.32 1.40 1.49 
1.30 1.38 1.48 
1.27 1.37 1.47 
1.26 1.36 1.47 
1.29 1.37 1.47 
1.28 1.36 1.47 
1.27 1.36 1.47 
1.27 1.35 1.48 
1.26 1.35 1.47 
1.25 1.36 1.49 
1.25 1.35 1.49 
1.29 1.37 1.50 
1.29 1.37 1.50 
1.29 1.37 1.50 
1.29 1.37 1.50 
1.28 1.37 1.50 
1.28 1.38 1.51 
1.28 1.38 1.52 
1.27 1.38 1.52 
1.27 1.38 1.52 
1.27 1.38 1.54 
1.27 1.39 1.54 
1.32 1.40 1.54 
1.31 1.40 1.55 
1.31 1.41 1.55 
1.31 1.40 1.57 
1.31 1.42 1.58 
1.30 1.42 1.57 
1.30 1.42 1.59 
1.30 1.44 1.59 
1.30 1.44 1.60 
1.30 1.44 1.61 
1.31 1.46 1.62 
1.34 1.46 1.63 
1.34 1.47 1.64 
1.33 1.48 1.66 
1.33 1.49 1.67 
1.33 1.50 1.68 
1.33 1.50 1.68 
1.33 1.51 1.70 
1.37 1.52 1.70 
1.37 1.53 1.71 

and  the  right tail percentage  point cyo.950, which is the 
minimum x value such that 

Pr(D 2 x) < 0.050. 

In principle, one should  compare  the  observed D value 
with the distribution of D with the same I3 value as 
that of the population  from which the sequences are 
drawn.  However, in practice, the 0 value is unknown. 
The most appropriate  distribution to compare with is 

perhaps the  one with I3 = v/an, but  tabulation of 
percentage points for many values of I3 is not feasible. 
Instead, w e  choose to present conservative percentage 
points (Table 2). The actual probabilities correspond- 
ing to these  percentage  points can not  be  larger  than 
the nominal level as  long as the actual I3 falls into the 
interval [2, 201. We choose this interval because it 
should cover most of the situations of practical impor- 
tance. To be precise, the  percentage points for  the 
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left tail is chosen by minimizing the  percentage points 
over the above mentioned  interval of 8 and  the right 
tail percentage points are chosen by maximizing the 
percentage points over  the above mentioned interval 
of 8. Figure 3, a and b, shows examples of the variation 
among  percentage  points  for  different values  of 8 and 
n. It  is clear that the percentage  points  corresponding 
to  the left tail  of the  distribution of D are relatively 
constant over the  range of values of 8, but those 
corresponding to  the  right tail are quite variable. This 
implies that the significant level based on a left tail 
percentage  point will be very  close to the nominal 
significant level but  that based on a  right tail percent- 
age point might be  too conservative. Interestingly, 
similat- simulation on TAJIMA’S test T showed that  the 
right tail of statistic T is also  very variable and  the 
right tail percentage points in Table 2 of TAJIMA 
(1989) are  too conservative. The conservative per- 
centage points of statistic T generated by using com- 
puter simulation can be obtained  from  the  authors 
upon request. 

Note  that  both two-sided and one-sided tests can be 
conducted using the statistic D. For  example, if the 
observed D is -2.20 with 10 genes (n = lo), then  the 
result is significant at  the 2.5% level if the test is one- 
sided and is significant at  the 5% level if the test is 
two-sided. 

TEST  STATISTICS  WITH N O  OUTGROUP 

When there is no outgroup available, the  number 
of singletons (a) may overestimate  the  number of 
mutations in the  external branches. T o  illustrate this 
point, consider the genealogy in Figure 4a. The mu- 
tations on branch a are all singletons under  the infinite 
site model, though  branch a is an  internal  branch 
under  the  definition used  in this paper.  For this rea- 
son, the  percentage points for  the  distribution of D 
no longer gives accurate  percentage points when 7, is 
replaced with qlS. A new test constructed using the 
moments of 77, and - qs is required. We  now consider 
such a  test. 

Since we are considering only bifurcating  trees, 
there  are exactly two branches leading to  the  root of 
a genealogy. Let K be  the  number of external  branches 
leading to  the  root of the  tree. Then for n > 2, K is 
either 1 or 0. For  example, K = 1 for  the  Figure 4a 
and 0 for  Figure  4b. TAJIMA (1983) showed Pr(K = 1) 
= 2/(n - 1). Consider the case  of K = 1. Let the 
number of mutations on the  internal  branch  (branch 
a)  be & and  the  number of mutations on the external 
branch  (branch b )  occurring  during  the coalescent 
time t2 be 4,. Then, E(&) = E ( Q  = 2Nep = 8/2. 

In  general, without any outgroup we cannot locate 
the  root of the  tree ( i e . ,  we do not know whether K = 

1 or 0) and so the quantity qs should be defined as 

7 s  = q e  + 5; 
where 

I o if K = o ,  ’ = E i  if K = 1. (33) 

and 
8 n 

n - 1  n - 1  E(qs) = 8 + - - - - 8. 

Note  that the same result was obtained by TAJIMA 
(1989) using the infinite allele model for each site, 
though each site has at most four alleles. Moreover, 

This suggests that  the normalized differences between 
9; - (and qs can be used as the test statistic. However, 
because 

71-l - 9 s  
a, - n/(n - 1)  n/(n - 1) 

n - 1  

we use the following test statistic 

where 

Var (L q - a,qs 
n -  1 

The derivation of the variance and  the values  of u: 
and v: are given  in APPENDIX c.  Following the same 
approach as in the derivation of D, and replacing 6 by 
its estimate q/an and 8‘ by q(q - l)/(af + b.), we have 
the following test statistic: 
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FIGURE 3.-Examples of percentage points as functions of 0 and 
n. (a) 1 % (bottom group) and 5% (top groups) left tail percentage 
points, and (b) 1 % (bottom group) and 5% (top groups) right tail 
percentage points of the test statistic D. In each group of curves, 
lines  with circles corresponds to 0 = 2, lines  with  solid circles to 0 = 
5 ,  lines  with diamonds to 0 = 10 and lines  with  solid squares to 0 = 
20. Each point in a curve is from an empirical distribution generated 
from 100,000 simulated samples. 

where 

UD8 = - (a, - 5) - Vn* ,  
n 

n - 1   n -  

in  which d ,  is defined by (46) in APPENDIX c. For 
convenience of application, the values of and vD* 
are presented in Table 1. Again, we use computer 
simulations to  determine  the conservative percentage 
points of the  distribution of this statistic over  the 
interval [2,20] of 8. These  percentage  points are given 
in Table 2. Detailed analysis showed that  the 5 %  and 
2.5% percentage  points  for  the left tail are very stable 
over  the  range of 8 but  the 1% and 0.5% percentage 

(a) (b) 
FIGURE 4.-Examples  of genealogy. (a) One of the two branches 

leading to the  root of the tree is an  external branch ( K  = 1) and (b) 
Both branches leading to the  root of the tree  are internal ( K  = 0). 

points for  the left tail are  quite variable when the 
sample size (n) is larger  than 20. The percentage 
points for  the  right tail of the distribution have similar 
variation as that of the statistic D. Therefore,  the 1% 
and 0.5% left tail significance levels  in Table 2 might 
be  quite conservative when the sample size is larger 
than 20 while all the right tail  significant  levels are 
conservative. 

It  should  be  pointed out  that since our test intends 
to  compare  the  mutations in the  recent past with those 
of relatively remote past, it is always better  to use an 
outgroup whenever available. The  outgroup should 
be from closely related population or  species to avoid 
the complication caused by parallel and back muta- 
tions. 

OTHER  TESTS 

There  are  other tests that can be  constructed using 
the results derived in this paper. For example, one 
can use the normalized difference between qe and II, 
as a test statistic 

n n  - 77, 
JVar(JL - ~ e ) '  

where 

Var(n, - qe) = Var(II,) + Var(q,) - 2Cov(q,,II,) 

= UB + U P .  

and 

u =  1 + n +  1 n +  1 - 4 - (&+* - A) 
3(n - 1) (n - 1)' n +  1 

2(n2 + n + 3) 2 
v = c , +  

9n(n - 1) 12 - 1' 
" 

Replacing B and B 2 ,  respectively, by q/u, and q(q - 1)/ 
(a: + b,), we have the following test: 
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where 

/ (a:  + bn), 

A test analogous to F using vs can also be  constructed. 
The test statistic is 

n - 1  
n t l s  - n n  

where 

From the results in APPENDIX c, this variance can be 
calculated. After  replacing 8 and 8’, respectively, by 
q/a, and ~ ( 7  - l ) / (a:  + b,), we arrive  at  the following 
test statistic: 

n, - - n - 1  
M 

t l S  

where 

2(n2 + n + 3 
9n(n - 1 )  d ,  + 

- 2 L ( 4 b . - 6 + E ) ] / ( ~ : + b , , ) ,   n -  1 n 
r 

n + l  +- 
2 n + l  

- 2 - + 2 -  
n(n - 1 )  (n - 1)” 

The conservative percentage  points of both F and F* 
are given in Table 4 and  for  the convenience of 
computation, the values of uF, vF, UP and  are given 
in Table 3, As noted  above,  the idea of our tests is to 

compare  mutations  occurred in the  remote past with 
mutations in the  recent past, and so the statistic F is 
preferred  over F* if an  outgroup is available. 

AN EXAMPLE 

We  now  use the Adh gene  sequence  data of 12 
individuals from Drosophila  yakuba in MCDONALD and 
KREITMAN (1991) to illustrate the use of the tests 
developed in the paper. Because outgroup sequences 
from Drosophila  simulans and Drosophila  melanogaster 
are available, qe can be  determined. For this data  set, 
we have n = 24 because each individual represents 
two sequences and 

II, = 3.16, tl = 18, vC = 9 ,  qs = 10. 

From  these  quantities, the values of test statistics T ,  
D, D *, F ,  and F* can be  computed. For example, 
from  Table 1 ,  one can find  that  for n = 24,  a, = 3.734 
and V D  = 0.1 797.  Therefore, U D  = a, - 1 - VD = 
2.555. Thus 

D =  1 - a247e 

JUOV + vDq2 

18 - 3.734 X 9 
J18(2.555 + 0.1797 X 18) 

- - 

- -15.606 - m 
= -1.529. 

Comparing this value with the left tail percentage 
points  (Table 2) ,  we can see that it is not significant at 
5 %  even for  a one sided test. The values of the  other 
tests can be  found  to  be 

T = -1.243, D* = -1.558, F = -1.735, 

and F* = -1.710. 

Comparing  these values of tests with corresponding 
tables of percentage  points, it is also found  that  none 
of the tests is significant, though they all  show  excess 
of external mutations. 

As noted  before,  a  more  rigorous analysis can be 
done by comparing  these values with percentage 
points from  a  narrower  range of 8 values in the 
neighborhood of V/a, = 4.82. The variance of this 
estimate can be obtained  from (2 1) by replacing 8 and 
02, respectively, by q/a,  and ~ ( 9  - I ) / (af  + b,). -The 
estimated  standard error of the estimate d a ,  is 1.885. 
We therefore choose to conduct  a  detailed analysis 
assuming that  the  true 8 is within the  range [?/a,  - 2 
X s.e., q/a, + 2 X s.e.1 = [1.05,8.59].  Table 5 sum- 
marizes the results of the analysis. Test F* gives the 
smallest mean probability while TAJIMA’S test T gives 
the largest mean probability. Although this does  not 
necessarily indicate larger powers for our tests, our 
tests seem to be promising. 
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TABLE 3 

Values of uF, vF, up. and u p  as functions of sample  size n 
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2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

0.000 
0.206 
0.2 19 
0.229 
0.236 
0.241 
0.244 
0.247 
0.248 
0.250 
0.250 
0.251 
0.251 
0.252 
0.252 
0.252 
0.251 
0.251 
0.25 1 
0.25 1 
0.250 
0.250 
0.250 
0.249 
0.249 
0.249 
0.248 
0.248 
0.247 
0.247 
0.246 
0.246 
0.246 

0.000 
0.016 
0.043 
0.047 
0.045 
0.043 
0.040 
0.038 
0.036 
0.034 
0.032 
0.031 
0.029 
0.028 
0.027 
0.026 
0.025 
0.024 
0.024 
0.023 
0.022 
0.022 
0.021 
0.021 
0.020 
0.020 
0.019 
0.019 
0.018 
0.018 
0.018 
0.017 
0.017 

0.000 
0.000 
0.067 
0.109 
0.138 
0.159 
0.174 
0.186 
0.195 
0.202 
0.207 
0.212 
0.215 
0.2 19 
0.221 
0.223 
0.225 
0.226 
0.228 
0.229 
0.230 
0.230 
0.231 
0.232 
0.232 
0.232 
0.233 
0.233 
0.233 
0.233 
0.233 
0.233 
0.233 

0.000 
0.000 
0.070 
0.083 
0.081 
0.077 
0.07 1 
0.066 
0.061 
0.057 
0.054 
0.050 
0.047 
0.045 
0.043 
0.041 
0.039 
0.037 
0.036 
0.034 
0.033 
0.032 
0.031 
0.030 
0.029 
0.028 
0.027 
0.026 
0.026 
0.025 
0.024 
0.024 
0.023 

35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

0.245 
0.245 
0.244 
0.244 
0.243 
0.243 
0.242 
0.242 
0.242 
0.241 
0.241 
0.240 
0.240 
0.240 
0.239 
0.239 
0.238 
0.238 
0.238 
0.237 
0.237 
0.237 
0.236 
0.236 
0.235 
0.235 
0.235 
0.234 
0.234 
0.234 
0.233 
0.233 
0.233 

0.017 
0.01 7 
0.016 
0.016 
0.0 16 
0.0 16 
0.0 15 
0.0 15 
0.0 15 
0.015 
0.015 
0.014 
0.014 
0.014 
0.014 
0.014 
0.0 14 
0.01  3 
0.01 3 
0.01 3 
0.013 
0.013 
0.013 
0.013 
0.013 
0.012 
0.012 
0.01  2 
0.012 
0.012 
0.012 
0.012 
0.012 

0.233 
0.233 
0.233 
0.233 
0.233 
0.233 
0.233 
0.233 
0.232 
0.232 
0.232 
0.232 
0.232 
0.232 
0.23 1 
0.23  1 
0.23 1 
0.231 
0.231 
0.230 
0.230 
0.230 
0.230 
0.229 
0.229 
0.229 
0.229 
0.229 
0.228 
0.228 
0.228 
0.228 
0.227 

0.023 
0.022 
0.022 
0.021 
0.021 
0.021 
0.020 
0.020 
0.020 
0.019 
0.0 19 
0.019 
0.018 
0.018 
0.018 
0.018 
0.017 
0.017 
0.017 
0.017 
0.0 16 
0.016 
0.016 
0.016 
0.016 
0.01 5 
0.01 5 
0.0 15 
0.0 15 
0.015 
0.0 15 
0.014 
0.0 14 

68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

0.232 
0.232 
0.232 
0.232 
0.231 
0.231 
0.23  1 
0.230 
0.230 
0.230 
0.229 
0.229 
0.229 
0.229 
0.228 
0.228 
0.228 
0.227 
0.227 
0.227 
0.227 
0.226 
0.226 
0.226 
0.226 
0.225 
0.225 
0.225 
0.225 
0.224 
0.224 
0.224 
0.224 

0.012 
0.012 
0.01 1 
0.01 1 
0.01 1 
0.01 1 
0.01 1 
0.01  1 
0.01 1 
0.01 1 
0.01 1 
0.01  1 
0.01 1 
0.01  1 
0.01  1 
0.01 1 
0.010 
0.010 
0.010 
0.010 
0.0 10 
0.0 10 
0.0 10 
0.0 10 
0.0 10 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 

0.227 
0.227 
0.227 
0.227 
0.226 
0.226 
0.226 
0.226 
0.225 
0.225 
0.225 
0.225 
0.225 
0.224 
0.224 
0.224 
0.224 
0.223 
0.223 
0.223 
0.223 
0.223 
0.222 
0.222 
0.222 
0.222 
0.222 
0.221 
0.221 
0.221 
0.221 
0.221 
0.220 

0.014 
0.014 
0.014 
0.014 
0.014 
0.014 
0.013 
0.013 
0.013 
0.013 
0.01 3 
0.013 
0.013 
0.013 
0.013 
0.012 
0.012 
0.012 
0.012 
0.01 2 
0.01 2 
0.01 2 
0.012 
0.01 2 
0.01 2 
0.0 12 
0.0 12 
0.01 1 
0.01  1 
0.01  1 
0.01  1 
0.0 1  1 
0.0 1  1 

DISCUSSION 

As noted  above, there  are two types of free topol- 
ogies in terms of the two branches  leading to  the  root. 
The first type is that  both  branches are internal (it?., 
K = 0) and is represented by Figure 4b. The other 
type is that  one of the two branches is external (ie., K 

= 1) and is represented by Figure  4a. Obviously, a 
tree with K = 1 is likely to have more  external  muta- 
tions than  a  tree with K = 0. This leads to  an  important 
question: should  the  information  about the value of K 

be used in a statistical test of the neutrality of muta- 
tions! The conditionality principle of inference  [for 
example, see Cox and  HINKLEY (1974)l states  that 
inference, particularly hypothesis testing,  should  be 
made by conditioning on  the observed values of ancil- 
lary  variables, that is, variables that  are  independent 
of whether or not the hypothesis being test is true. 
TAJIMA (1983) has shown that  under selective neu- 
trality Pr(K = 1) = 2 / ( n  - l), where n is the sample 
size. In the presence of selection, this probability is 
likely to be  different.  Therefore, K may not  be an 
ancillary variable and  one should  be  cautious in using 
a  conditional test based on  the value of K .  

However, if the conditional test statistics based on 
the value of K are  to be  developed, the most appro- 
priate way to construct such a test is to derive all the 
necessary expectations, variances and covariances con- 
ditioning on  the value of K and  then substitute  them 
into  the statistic D. However, one can avoid such a 
tedious process by continuing to use the test statistic 
D with percentage  points  generated  from genealogies 
of the same K (say l), though this is a less desirable 
approach.  Two such tables, one  for K = 0 and  the 
other  for K = 1, can be obtained  from the  authors 
upon  request. The two conditional tests have similar 
patterns as the unconditional test D. In particular,  the 
left tail percentage points are insensitive to  the value 
of 8.  The relationship  among the unconditional test 
statistic D and conditional  ones are 

Pr(D > a) = Pr(D > a I K = O)Pr(K = 0) 

+ Pr(D > a I K = l)Pr(K = 1) 

The present study assumes no recombination.  It is 
rather easy to see that  recombination  reduces the 
variance of the difference between any two estimates 
of 8 from 71, qe, ti, 7, or II,. For example, let us assume 
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TABLE 4 

Percentage  points of statistic F and F* as  functions of sample  size n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

-1.96 
-2.1 1 
-2.29 
-2.37 
-2.52 
-2.56 
-2.60 
-2.65 
-2.71 
-2.73 
-2.73 
-2.75 
-2.78 
-2.80 
-2.80 
-2.79 
-2.84 
-2.83 
-2.8 1 
-2.85 
-2.84 
-2.86 
-2.88 
-2.90 
-2.91 
-2.91 
-2.88 
-2.86 
-2.84 
-2.87 
-2.86 
-2.86 
-2.85 
-2.84 
-2.84 
-2.83 
-2.83 
-2.83 
-2.84 
-2.81 
-2.79 
-2.76 
-2.76 
-2.78 
-2.77 
-2.80 
-2.77 

-1.78 
- 1.90 
-2.07 
-2.17 
-2.22 
-2.26 
-2.33 
-2.40 
-2.44 
-2.40 
-2.41 
-2.40 
-2.41 
-2.43 
-2.42 
-2.44 
-2.45 
-2.45 
-2.44 
-2.43 
-2.44 
-2.45 
-2.43 
-2.45 
-2.46 
-2.46 
-2.45 
-2.44 
-2.42 
-2.43 
-2.43 
-2.42 
-2.41 
-2.40 
-2.39 
-2.38 
-2.38 
-2.36 
-2.35 
-2.33 
-2.32 
-2.31 
-2.32 
-2.31 
-2.29 
-2.31 
-2.28 

-1.60 
-1.71 
-1.87 
-1.91 
-1.95 
-1.99 
-2.01 
-2.06 
-2.10 
-2.13 
-2.12 
-2.12 
-2.08 
-2.1 1 
-2.09 
-2.09 
-2.08 
-2.09 
-2.09 
-2.09 
-2.08 
-2.07 
-2.07 
-2.07 
-2.07 
-2.05 
-2.05 
-2.05 
-2.03 
-2.02 
-2.00 
-2.01 
-1.99 
-1.99 
-1.97 
-1.97 
-1.97 
-1.95 
-1.94 
-1.94 
-1.93 
-1.92 
-1.92 
-1.92 
-1.89 
-1.91 
-1.89 

2.20 
1.91 
1.79 
1.71 
1.68 
1.64 
1.62 
1.60 
1.59 
1.58 
1.57 
1.56 
1.55 
1.55 
1.54 
1.54 
1.54 
1.53 
1.54 
1.53 
1.53 
1.53 
1.53 
1.52 
1.52 
1.52 
1.52 
1.53 
1.52 
1.51 
1.52 
1.51 
1.51 
1.51 
1.52 
1.51 
1.51 
1.51 
1.51 
1.51 
1.51 
1.50 
1.51 
1.51 
1.52 
1.52 
1.51 

2.53 
2.15 
2.00 
1.91 
1.88 
1.84 
1.83 
1.81 
1  .80 
1.79 
1.79 
1.78 
1.77 
1.78 
1.77 
1.76 
1.77 
1.77 
1.77 
1.76 
1.77 
1.76 
1.76 
1.76 
1.77 
1.76 
1.76 
1.76 
1.76 
1.77 
1.77 
1.76 
1.78 
1.76 
1.78 
1.78 
1.78 
1.77 
1.78 
1.78 
1.78 
1.78 
1.78 
1.79 
1.79 
1.80 
1.81 

2.78 
2.36 
2.19 
2.1 1 
2.07 
2.05 
2.04 
2.03 
2.02 
2.01 
2.02 
2.01 
2.01 
2.01 
2.01 
2.00 
2.01 
2.02 
2.01 
2.02 
2.02 
2.02 
2.02 
2.02 
2.03 
2.03 
2.04 
2.03 
2.03 
2.04 
2.05 
2.04 
2.06 
2.04 
2.06 
2.07 
2.08 
2.07 
2.09 
2.09 
2.1 1 
2.1 1 
2.10 
2.12 
2.13 
2.13 
2.15 

-.95 
-1.37 
-1.69 
-1.93 
-2.12 
-2.27 
-2.40 
-2.51 
-2.61 
-2.67 
-2.73 
-2.80 
-2.86 
-2.92 
-2.95 
-2.99 
-3.02 
-3.08 
-3.12 
-3.14 
-3.16 
-3.18 
-3.17 
-3.18 
-3.24 
-3.22 
-3.21 
-3.26 
-3.24 
-3.27 
-3.27 
-3.30 
-3.29 
-3.27 
-3.30 
-3.28 
-3.27 
-3.20 
-3.24 
-3.20 
-3.07 
-3.09 
-3.01 
-3.12 
-3.00 
-2.92 
-2.97 

-.94 
-1.35 
-1.64 
-1.84 
-2.01 
-2.12 
-2.2 1 
-2.29 
-2.33 
-2.39 
-2.42 
-2.46 
-2.50 
-2.55 
-2.55 
-2.56 
-2.57 
-2.60 
-2.60 
-2.61 
-2.62 
-2.62 
-2.61 
-2.58 
-2.62 
-2.60 
-2.59 
-2.60 
-2.54 
-2.54 
-2.51 
-2.53 
-2.50 
-2.48 
-2.49 
-2.45 
-2.43 
-2.41 
-2.37 
-2.36 
-2.34 
-2.32 
-2.32 
-2.32 
-2.30 
-2.32 
-2.30 

-.94 
-1.32 
-1.58 
-1.74 
- 1.85 
-1.92 
-1.97 
-2.07 
-2.03 
-2.07 
-2.08 
-2.08 
-2.1 1 
-2.12 
-2.15 
-2.14 
-2.09 
-2.1 1 
-2.08 
-2.06 
-2.06 
-2.06 
-2.06 
-2.05 
-2.05 
-2.04 
-2.02 
-2.00 
-2.00 
-1.97 
- 1 .98 
-1.97 
- 1.96 
-1.95 
-1.93 
-1.94 
-1.93 
-1.94 
-1.92 
-1.92 
-1.91 
-1.91 
-1.91 
-1.91 
-1.88 
-1.89 
-1.88 

~ 

a0 950 
~ 

2.07 
1.73 
1.61 
1.53 
1.48 
1.48 
1.47 
1.44 
1.45 
1.44 
1.43 
1.43 
1.43 
1.44 
1.43 
1.43 
1.44 
1.43 
1.44 
1.43 
1.43 
1.44 
1.44 
1.44 
1.44 
1.44 
1.44 
1.45 
1.44 
1.45 
1.45 
1.44 
1.44 
1.45 
1.45 
1.46 
1.45 
1.45 
1.46 
1.46 
1.47 
1.46 
1.46 
1.46 
1.47 
1.47 
1.47 

2.26 
1.85 
1.69 
1.61 
1.60 
1.60 
1.59 
1.58 
1.58 
1.59 
1.58 
1.59 
1.59 
1.60 
1.60 
1.60 
1.61 
1.60 
1.61 
1.61 
1.61 
1.62 
1.62 
1.62 
1.62 
1.63 
1.63 
1.64 
1.63 
1.64 
1.64 
1.64 
1.65 
1.65 
1.66 
1.66 
1.66 
1.67 
1.68 
1.68 
I .69 
1.69 
1.70 
1.71 
1.72 
1.73 
1.73 

2.38 
1.95 
1.79 
1.74 
1.73 
1.72 
1.71 
1.72 
1.72 
1.74 
1.74 
1.74 
1.75 
1.76 
1.77 
1.78 
1.78 
1.78 
1.79 
1.79 
1 .80 
1.82 
1.82 
1.82 
1.82 
1.83 
1.84 
1.84 
1.85 
1.86 
1.87 
1.87 
1.90 
1.89 
1.91 
1.92 
1.93 
1.94 
1.97 
1.96 
1.98 
1.99 
2.00 
2.01 
2.03 
2.03 
2.04 

that a sequence with 8 is divided into two independent 
(free  recombination) half each with 8 / 2 .  Then 
from (31) 

r 

< &(a, - l)8 

Var(7 - anqe) = 2 a,(a, - 1)8/2 1 where the  right  hand side of the inequality is the 

+ [ b ,  + a: (c, - - 3 1  (8/2) ' ]  Thus ,  recombination tends to make our tests conserv- 
variance of the  difference assuming no recombination. 

ative. 
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TABLE 5 

Achieved significance  levels of five tests over the interval [1.05, 
8.591 of 0 for the D. yakuba data 

Prob. Min. prob Max. prob. Mean. prob. 0 = 4.82 
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P r ( T s  -1.243) 0.093 0.106 0.100 0.101 
Pr(D d -1.529) 0.088 0.098 0.093 0.093 
Pr(D* < -1.558) 0.075 0.102 0.085 0.084 
Pr(F < -1.734) 0.078 0.094 0.082 0.081 
Pr(F* d -1.734) 0.070 0.100 0.078 0.073 

T h e  present  study  also  assumes  a  constant  popula- 
tion size and  no  migration. T h e  effect  of  these  factors 
should  be  investigated in the  future. Here we notice 
that  migration may introduce  rare alleles into  a  pop- 
ulation and  that a  population  expansion may produce 
excess of  rare alleles. Thus  an excess of  mutations in 
the  external  branches  of  a  genealogy  or in general  a 
significant  test  value does  not necessarily  imply the 
presence  of  natural  selection. 

T h e  major  difference  between TAJIMA’S T test and 
our tests is that T uses the  difference  between q and 
II, whereas  our tests  use wither  the  difference  be- 
tween q i  and qe or the  difference  between qe and II,. 
As can be  seen  from  Figure 2, the  correlation  between 
7 and II, is much  stronger  than  that  between 7; and qe 
or  qe and II,. For this  reason, our  tests are likely to  be 
more  powerful  than TAJIMA’S test.  However,  a  more 
careful  comparison  of  the  powers  of TAJIMA’s test and 
our  tests needs to be  made. T h e  simplest way to 
compare  the  powers  of  various  tests is to apply them 
to simulated  samples  that are  generated  without  the 
assumption of  neutrality  of  mutations.  We  intend  to 
carry  such  studies in the  future. 

It  should  be  emphasized  that  the  present tests are 
for testing the hypothesis that all mutations in a  DNA 
region  are selectively neutral,  but  not  for  testing  the 
neutral  mutation  hypothesis  (KIMURA  1968). T h e  lat- 
ter assumes that  the  majority  of  mutations  that  can 
contribute significantly to the  genetic  variation  at  a 
locus are  neutral or nearly  neutral.  This  assumption 
is considerably  weaker  than  the  assumption  that all 
mutations  at  the locus are  neutral.  Indeed,  the  neutral 
mutation  hypothesis  assumes  that  the most prevalent 
type  of  selection is purifying  selection  (KIMURA  1983). 
Thus,  for  example,  even if all the  rare variants at  a 
locus are  deleterious,  the  neutral  mutation  hypothesis 
still holds  as  long  as  the  majority  of  the  more  common 
variants are selectively neutral;  note  that in this  case, 
the hypothesis  that all mutations  are  neutral  does  not 
hold.  Some  authors  have failed to distinguish  between 
the  two  hypotheses.  For  example, TAJIMA (1989) 
stated  that his test was for testing the  neutral  mutation 
hypothesis, but like the  present tests, it is for testing 
the  assumption  that all mutations  are  neutral. 

This  study was supported by National  Institutes of Health  grants. 

APPENDIX A. DERIVATIONS OF E ( l f ) ,  E(LnlL) 
AND EU,L,) 

To derive the  expectation  of  a  variable, it is often 
convenient to derive  a  function  of  the  variable  and 
obtain  the  required  expectation by a  simple  transfor- 
mation.  In  this  and  subsequent  appendices,  the  func- 
tion  of  a  quantity whose expectation is to  be derived 
will be  denoted by g,. T h e  definition  of g, differs in 
different cases. 

Let us consider E(I:) first and g,, = n(n - 1)l:. 
Then 

E(gn) = 2(n - I)E(t;) + (n  - I)(n - 2) 

= n(n - l)E(tZ) +E&,) + 2(n - I)(n - 2) 

2M‘ + 2(n - 2)M‘ =- 
n(n - I )  n(n - I )  + Ekn-1) 

Therefore, 

Next, we consider E(lnZA). Let I, and 1; be  two  ran- 
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domly chosen different  external  branches. Then  Therefore, 
0 

P =  L 

n(n - 1) 

2(n - 2)  
n(n - 1) 

2(n - 2)  
n(n - 1) 

tn(l(n-1) + tn) P =  
z,z: = 

(l(n-1) + L)tn P =  

2 n(n + 1 )  
E(Z,Z;) = 

(n - l)(n - 2)  3n + 2 ~ , + ~  

1 
n(n - 1)' 

.- 

Finally, we consider E(J,L,). Since 

we have 

Let g, = (n - l)JnLn. After simplification, we have 

Then  Therefore, 

= k M 2  + (n - 1)M2 = na,M2. 
n-1 - k 

k= 1 

We thus have E(g3) = 2 / 3 .  In general 

"+- - 2 2(n-3)+(n-3) (n -4)E(g  ) 
n (n - 1)' (n - I ) (n  - 2) n-2 

2 2(n- 2 
n (n - 1)' (n - l ) (n  - 2)  

3, + =-+- 

(n - 3)(n - 4)+. . . +-+E(gr)) 3 x 2  
* (  n - 2  4 

- - 

(35 )  (37)  

APPENDIX B. COVARIANCE  BETWEEN 7, 
AND II, 

Let k, be  the  number of nucleotide  differences 
between two randomly selected sequences from  a 
sample of n sequences and e,  be  the  number of mu- 
tations  on  a randomly selected external  branch. Then 

I 2 
n(n - 1)' 

71 + rj Pr = 

k, = 
2 

n(n - 1)' 
k,-l + ri + rj Pr = 1 - 

where 7i and 7, are for two different  branch segments 
but have the same time length t,. Then the  product 
of k, and e,  has the  recurrent relationship: 
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Le. = 

2 2  p -" 
(n(n - 1)n 

(Ti + Tl)(en-l + T&), 
2 ( n - 2 )  p n = - -  

n(n- 1) n 

( k - 1  + + T&)Ti, ps=" 
4(n - 2) 1 
n(n - 1 )  n 

( k t - 1  + + Tt)T j ,  p4=-- 
4(n - 2 )  1 
n(n - 1)n 

(Ti + Tj)Ti,  I -  

4(n - 2 ) ( n  - 3 )  
(L., + T,  + T&)(en-, + rl),P5 = -- n(n- 1 )  n 

( k t - 1  + Ti + Td(e,-, + T & ) , P ~  = m; 4(n - 2 )  1 

(n  - 2)(n - 3 ) 2  
n(n- 1) n 

(n  - 2)(n - 3 )  (n - 4) 
n(n- 1) n 

n(n- 1 )  n 

( k t - 1  + T& +tt)Ti, P ,  = 

( k  + 7t + T,)(en--I + T ~ ) ,  Pn = 

(n - 2)(n - 3)2  
( L l  + T& + T,)(en-l + T & ) . P ~  = 

From the above recurrent relationship, we have 

Because 

e e 
E(k,) = 8, E(e,) = -, E(T)  = 

n n(n - 1 ) '  

e +  28' = 
n(n - I )  n2(n - 

+ e +  n + 2  
n2(n - 1 )  n2(n - 1) 

8 2 .  

Note  that 

E(n,vc) = nE(he,), 

and let g,, = nk,en. Then we have 

+ n + 2  
n(n - 1 )  

82.  

After  further simplification, we have 

E(g,,) = a0 + be2, 
where 

n + l  K - 1  
a = 2  

( n  - I)* k = l  K(k + 1 )  E- 

= 2 (n  n - + 1)' l (an+l - %) 

1 + - e2. 
n -  1 

APPENDIX C 

Consider  the genealogy of n genes  conditioning  on 
K = 1 ,  i.e. there is one  external  branch leading to  the 
root of the  three. Let 1, be the length of a randomly 
selected external  branch  that is not directly connected 
to the  root  and 1: be the length of the  external  branch 
that is directly connected to  the  root. We then have 
the following recurrent relationship 

t,-~ + t,, Pr = - n - 3  
n - 1  I, = 

2 Pr = - 
n - 1  

we can substitute  these  expectations and P's for those 
in Equation 38 and obtain 1,: = 1:-, + t, 
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with initial condition 12 = Zi = 0. We thus have Therefore, 

E(1,) = - E(L-1) + E(tn). 
n - 3  
n - 1  

Letting h, = (n  - l ) (n  - 2 ) L  we have 

E(h,) = E(hn-l) + - M = - n - 2  " k - 2  
M 

n k=2 k 

= [n - 1 - 2(a,+1 - 1 ) w ,  

and 

" M  
E(,!:) = - - - (1 - 3.1. 

k=2 k(k - 1 )  

Let L, be the total  length of the  external branches. 
Then 

E ( L , I K = ~ ) =  n - 1 - 2(a,+1- l ) M + (  1 - t ) M  
n - 2  

=(2- n - 2  n 
2a,+] - 3 - - )M,  1 

Therefore, 

= ( 2  - 
n - 2  n 

We  now consider the variance of {, where  {is  defined 
as in Eq. (33) 

Var({) = E ( { 2 )  - E ~ ( Q  

" e +  n - 2  - 
n - 1 (n - i)e2' 

T o  derive the covariance between {and qe, notice that 

=- (8/2 + 02/2 
n -  1 

=- I (e + e2). n -  1 

and 

1 1 
n - 1   n - 1  
" - (e + e2) - - (42) 

. (- 3 - 2a,+1 - 3 
2 n - 2  n 

Note  that 

Replacing each term  on  the  right  hand side of  last two 
equations by its equation  derived  above,  (for  example, 
replacing cov(7,Q by Equation 40), we have 

Var(tl,) = - 
n 

n -  1 
8 + d,B2 (44) 

n a, + 1 
Cov(t,b) = - n - 1  e+-e2 n -  1 (45) 
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where 
n - 2  2 d ,  = c, + +- 

( n - 1 ) '  n - 1  

(t - 2 ~ + 1  - 3 - 1) 
n - 2  n 

Putting  these back to (43), we have 

Var(D*) = + w i d 2 ,  
where 

(47) 

We  now consider  the covariance between r and II,. 
Let k, be the total time  length between two randomly 
selected sequences (excluding  the one  that  connects 
directly to  the  root).  Then we have the  recurrent 
relationship: 

2 
(n  - l ) (n  - 2) 2 t n  Pr = 

k n =  [ 
2 

(n  - l)(n - 2)' 
k,-l + 2t, Pr = 1 - 

From this, we have 

E ( k n )  = 
n(n - 3) 

(n  - l ) (n  - 2) E ( k n - 1 )  + 2 E ( t n ) .  

Therefore, 

2 
= 46,-6+- [ n - 1  

+ 2(n - 2) 
n2(n- 1 )  n 

The coefficient is always  less than 1 when n > 3. This 
implies that when K = 1 ,  II, is an  underestimate of 6. 
We  finally have 

Cov(S,K) = W " S )  - W . ) E ( S )  = - 1 
n - 1  

4 b , - 6 + - + -  2 2(n - 2 )  n - 2 
n - 1 n2(n - 1 )  + 4,] 2n 82 

0 0 

= I ( 4 b .  n - 1  - 6 + :) 8' 

(8 + 282) - - 8' +- 
n(n - 1 )  n - 1  

2 
Let h, = ( n  - l ) (n  - 2)k,/2. We then have =- n ( n - 1 )  8 + L ( 4 b , ,  n -  1 - 7 + :)8' 

E(h,) = - E(hn-1) + - 

m ? l - 2 ) )  

n n - 2 M  and 
n - 2  n 

n(n - 1 )  
(n  - 2)(n - 3) 

Cov(qs,nn) = Cov(~,,II,) + COV({,II,) 
- - 

n(n - 3) n - 2  
M + -  

(49) + 
(n  - l ) (n  - 2) n 

M =  ... 

i+ i2 ( i  - 1 )  n 

2b, - 3 + - 
n - 1  +"(4b,-6+:)O2, n - 1  


